If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+10x=999
We move all terms to the left:
x^2+10x-(999)=0
a = 1; b = 10; c = -999;
Δ = b2-4ac
Δ = 102-4·1·(-999)
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-64}{2*1}=\frac{-74}{2} =-37 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+64}{2*1}=\frac{54}{2} =27 $
| -3x-41=54-8x | | -133-3x=-13x+127 | | -133-3x=—13x+127 | | –5h=–9−6h | | g2+ 13=16 | | -4x^2-5=0 | | -3x-18=27-5x | | b4+ 14=15 | | 2x^2-48x-2=0 | | |x|+7=-3 | | 6-7x=9-8x | | -149+3x=93+14x | | 5x=1040 | | 10(x+10)=50 | | –16q=4 | | 16-2c=5c+9 | | -107+15x=5x+113 | | 4xx=64 | | 4xxx=64 | | -79-11x=-15x+33 | | 4x+8/6=-2 | | 180=40+4x | | 3w=14.7 | | 20x2-5=0 | | 3(s−13)=15 | | 20x*2-5=0 | | -209+4x=71-10x | | 50=-1/2x+40 | | 3x-6+5x-20=38 | | 2x-51=81 | | 6x+1.6=33.2 | | 6x-19=8x+29 |